By Topic

A Field-Programmable Analog Array Development Platform for Vestibular Prosthesis Signal Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toreyin, H. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Bhatti, P.

We report on a vestibular prosthesis signal processor realized using an experimental field programmable analog array (FPAA). Completing signal processing functions in the analog domain, the processor is designed to help replace a malfunctioning inner ear sensory organ, a semicircular canal. Relying on angular head motion detected by an inertial sensor, the signal processor maps angular velocity into meaningful control signals to drive a current stimulator. To demonstrate biphasic pulse control a 1 k Ω resistive load was placed across an H-bridge circuit. When connected to a 2.4 V supply, a biphasic current of 100 μA was maintained at stimulation frequencies from 50-350 Hz, pulsewidths from 25-400 μ sec, and interphase gaps ranging from 25-250 μsec.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:7 ,  Issue: 3 )