By Topic

Steady-State Visual Evoked Potential-Based Computer Gaming on a Consumer-Grade EEG Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chumerin, N. ; Lab. voor Neuroen Psychofysiologie, KU Leuven, Leuven, Belgium ; Manyakov, N.V. ; van Vliet, M. ; Robben, A.
more authors

In this paper, we introduce a game in which the player navigates an avatar through a maze by using a brain-computer interface (BCI) that analyzes the steady-state visual evoked potential (SSVEP) responses recorded with electroencephalography (EEG) on the player's scalp. The four-command control game, called The Maze, was specifically designed around an SSVEP BCI and validated in several EEG setups when using a traditional electrode cap with relocatable electrodes and a consumer-grade headset with fixed electrodes (Emotiv EPOC). We experimentally derive the parameter values that provide an acceptable tradeoff between accuracy of game control and interactivity, and evaluate the control provided by the BCI during gameplay. As a final step in the validation of the game, a population study on a broad audience was conducted with the EPOC headset in a real-world setting. The study revealed that the majority (85%) of the players enjoyed the game in spite of its intricate control (mean accuracy 80.37%, mean mission time ratio 0.90). We also discuss what to take into account while designing BCI-based games.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:5 ,  Issue: 2 )