By Topic

Mixture of Factor Analyzers Using Priors From Non-Parallel Speech for Voice Conversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhizheng Wu ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Kinnunen, T. ; Eng Siong Chng ; Haizhou Li

A robust voice conversion function relies on a large amount of parallel training data, which is difficult to collect in practice. To tackle the sparse parallel training data problem in voice conversion, this paper describes a mixture of factor analyzers method which integrates prior knowledge from non-parallel speech into the training of conversion function. The experiments on CMU ARCTIC corpus show that the proposed method improves the quality and similarity of converted speech. With both objective and subjective evaluations, we show the proposed method outperforms the baseline GMM method.

Published in:

Signal Processing Letters, IEEE  (Volume:19 ,  Issue: 12 )