Cart (Loading....) | Create Account
Close category search window
 

High-Efficient Chip to Wafer Self-Alignment and Bonding Applicable to MEMS-IC Flexible Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Lu ; Res. Center for Ubiquitous MEMS, Nat. Inst. of Adv. Ind. Sci. & Technol., Tsukuba, Japan ; Nakano, Y. ; Takagi, H. ; Maeda, R.

In this paper, a flexible approach for chip to wafer high-accurate alignment and bonding is developed using a self-assembled monolayer (SAM). In this approach, a hydrophobic SAM, FDTS (CF3(CF2)7(CH2)2SiCl3), is successfully patterned by lift-off process on an oxidized silicon wafer to define the binding-sites. A certain volume of H2O (μ/mm2) is dropped and then spread on the non-coated hydrophilic SiO2 binding-sites for self-alignment of various microelectromechanical systems (MEMS) and IC chips by capillary force of H2O. Our results demonstrate that reasonably high alignment speed (in milliseconds) and excellent alignment accuracy ( ≤ 1 μm) are achieved when the difference in the measured contact angle between hydrophobic FDTS and hydrophilic binding-sites is >;70°. It is also found that the hydrophilic frame at the edge of each binding-site is effective in achieving successful self-alignment, while a super fine pattern at the center of the binding-site can be used to control the bonding strength. The effects of the Au/Cr thin film pattern on self-alignment are studied and discussed in this paper to enable the application of the above approach in various MEMS-IC integration processes, especially for low-cost mass production of wireless sensor nodes.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.