Cart (Loading....) | Create Account
Close category search window

Characterization of (AgCu)(InGa)Se _{\bf 2} Absorber Layer Fabricated by a Selenization Process from Metal Precursor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, the effects of Ag-alloying in the selenization of metal precursors to form (AgCu) (InGa)Se2 are investigated. Metal precursors with different structures were prepared by sputtering from Cu0.77Ga0.23, Ag, and In targets. The phases and the composition of the precursor films were evaluated by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry. The addition of a Ag layer between the Mo and Cu-Ga-In layers resulted in much less islanding of In-rich phases than typically observed in sputtered Cu-Ga-In films. Selenization at 475°C of Ag-containing precursors resulted in better adhesion than precursors without Ag. After the selenization reaction, Ag and Cu were uniformly distributed through the film, although Ga remained near the back of the film, as was observed in precursors without Ag. A (AgCu)(InGa)Se2-based solar cell with 13.9% efficiency was demonstrated.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.