By Topic

Transmission capacity of D2D communication under heterogeneous networks with Dual Bands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ziyang Liu ; Wireless Signal Process. & Network Lab., Beijing Univ. of Posts & Telecommun., Beijing, China ; Tao Peng ; Qianxi Lu ; Wenbo Wang

This paper analyzes the maximum achievable transmission capacity of the D2D communication system under heterogeneous networks. The heterogeneous networks contain two primary systems working on independent bands and D2D communication guarantees the target outage probabilities of both systems on each band. By utilizing stochastic geometry, the effects of the spatial densities and the transmission power allocation ratio on the achievable transmission capacity are presented. Moreover, the optimal transmission density of D2D pairs and the optimal power allocation ratio are derived. The maximum capacity of D2D communication is defined based on the former optimal value from theoretical results. It is shown that the optimal power allocation ratio is proportional to the product of bandwidth, node density and transmission power of two primary systems.

Published in:

Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2012 7th International ICST Conference on

Date of Conference:

18-20 June 2012