By Topic

Hybrid neural networks for automatic target recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Waldemark, J. ; Dept. of Phys., R. Inst. of Technol., Stockholm, Sweden ; Becanovic, V. ; Lindblad, T. ; Lindsey, C.S.

The paper presents a hybrid neural network system for automatic target recognition, or ATR. The ATR system uses a hybrid of a biological inspired neural net called the Pulse Coupled Neural Net, PCNN, and traditional feedforward neural nets. The PCNN is an iterative neural network in which, for example, a grey scale input image results in a 1D time signal invariant to rotation, scale and translation alternations. The PCNN can also extract edges, perform object segmentation and extract texture information. The PCNN pre-processor generates a 1D time signal that is input to a feedforward pattern recognition net

Published in:

Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on  (Volume:4 )

Date of Conference:

12-15 Oct 1997