Cart (Loading....) | Create Account
Close category search window
 

Edge Effect on Thermally Excited Mag-Noise in Magnetic Tunnel Junction Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zeng, T. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Zhou, Y. ; Lin, K.W. ; Lai, P.T.
more authors

Thermally excited magnetic noise (mag-noise) has gradually become a major concern in magnetic tunnel junction sensors. By conducting micromagnetic simulation, the spatial distribution of thermal mag-noise in the free layer (FL) was obtained under various hard bias (HB) field and applied field. It was demonstrated that the edges are the main contributor of thermal mag-noise in the FL. This result could be explained by the nonuniform distribution of the stiffness field around the edges. It was also found that both HB field and applied field could suppress the thermal mag-noise in edges. A relatively high applied field will decrease the influence of HB field on mag-noise in the edges.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.