Cart (Loading....) | Create Account
Close category search window
 

Analogue of Electromagnetically Induced Transparency in a Magnetic Metamaterial

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meng, F.-Y. ; Dept. of Microwave Eng., Harbin Inst. of Technol. (HIT), Harbin, China ; Zhang, K. ; Fu, J.-H. ; Wu, Q.
more authors

In this paper, the analogue of electromagnetically induced transparency is achieved in a magnetic metamaterial consisting of coupled “radiative” square closed loop (SCL) and “dark” square spiral resonator (SSR). Full-wave numerical simulations are carried out to validate the EIT-like effect of the magnetic metamaterial. Transmission spectrums and surface current distributions for the metamaterial are presented. It is shown that placing the SSR close to the SCL causes the electromagnetic field energy to be coupled back and forth between them. This leads to destructive interference and the transparency window in the transmission stop-band of the metamaterial. In addition, it is numerically demonstrated that the magnetic metamaterial can be employed as a refractive-index based sensor with a sensitivity of 41.3 mm/RIU, which means that the resonance wavelength of the sensor shifts 41.3 mm per unit change of refractive-index of the surrounding medium.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.