Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Optimization of Magnetic Nanoparticles for Magnetic Particle Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ludwig, F. ; Inst. of Electr. Meas. & Fundamental Electr. Eng., Tech. Univ. Braunschweig, Braunschweig, Germany ; Wawrzik, T. ; Yoshida, T. ; Gehrke, N.
more authors

Systematic studies of the magnetic properties of magnetic nanoparticles from FeraSpin R and the FeraSpin Series with respect to their suitability as tracers for magnetic particle imaging are presented. Magnetic particle spectroscopy measurements indicate that FeraSpin R exhibits a harmonic spectrum very similar to that of Resovist, whereas FeraSpin L, XL, and XXL show a 2.5-fold increase of harmonic amplitudes compared to FeraSpin R. To understand the differences between the various samples of the FeraSpin Series, representing size-selected, narrowly distributed particles of identical composition extracted from FeraSpin R, measurements of the ac susceptibility (ACS), magnetorelaxometry (MRX), and static M-H curves were performed on suspended and immobilized particle samples. ACS and MRX measurements on immobilized samples indicate a wide distribution of anisotropy energies despite the narrow distribution of hydrodynamic sizes. Static magnetization measurements show that all samples exhibit a bimodal distribution of magnetic moments: The fraction of larger moments corresponds to the contribution from the overall particle core, whereas the smaller is attributed to the contribution from the crystallites comprising the core.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )