By Topic

Smoother Substrate Deposition Designs and Process Emulations of DC Magnetron Sputters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng-Tsung Liu ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Chih-Wen Chang ; Chang-Chou Hwang

To smooth the substrate depositions of DC magnetron sputter (MS), such that the supplementary electrical and mechanical adjustment efforts can be alleviated, a refinement scheme that can be applied directly to the existing DC MS will be introduced. By properly control the magnetic and electric fields inside the vacuum chamber, trajectories of those atoms that are sputtered from the target surface can be more spread out. In addition, with the resultant higher plasma density, chance of collisions among the sputtered atoms and those Ar ions in the plasma will also be increased, hence the resulting distributions of target atoms deposited on the substrate surface will certainly be even out. To further confirm such concepts, a rational emulating process that can exploring both the atom sputtering process from the target and those collisions at the chamber with different three-dimensional magnetic and electric field environments is also developed. Thus the associated performance investigations on the DC MS with different magnetron arrangements can then be conveniently explored.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )