By Topic

Performance of Low-Density Parity Check Codes With Parity Encoded by (1, 7) Run-Length Limited Code for Perpendicular Magnetic Recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinyoung Kim ; $^{1}$Soongsil University,, Seoul, Korea ; Jaejin Lee ; Joohyun Lee

Maximum transition run (MTR) codes have recently been applied for perpendicular magnetic recording because of their high code rate. At the same time, the (1, 7) run-length limited (RLL) code, which increases the minimum distance of data transition, has not been applied due to a code rate that is lower than MTR codes. Therefore, in order to receive the advantages of both codes when low-density parity check (LDPC) codes are applied, this paper proposes an LDPC coding scheme with parity encoded by (1, 7) RLL code. This will increase the performance of LDPC codes and minimize the loss of code rate with MTR-coded user data in the perpendicular magnetic recording channel. The Viterbi trellis is easily modified by different constraints of MTR and (1, 7) RLL codes. Simulation results show that MTR-coded user data with (1, 7) RLL-coded LDPC parity performs approximately 0.3 dB better than MTR-coded user data with parity. It also performs better regardless of various user bit densities.

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 11 )