By Topic

A Novel Hybrid Resonator for Wireless Power Delivery in Bio-Implantable Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yik Yan Ko ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Ho, S.L. ; Fu, W.N. ; Xiu Zhang

Magnetic resonant wireless power transfer (MRWPT) is a developing technology to transfer power over a relatively long distance. It offers a promising solution in avoiding costly and risky battery replacement surgery in bio-implantable devices. One of the obstacles of the application of this transfer technique is that its efficiency is not satisfactory and the design method has not been presented systemically. In this paper, a design method of MRPWT system with a novel hybrid resonator for deep brain stimulation (DBS) device is proposed. A new formula to determine the diameter of the resonators according to the power transfer distance is presented. The merit of the proposed design is that the transmitter coil of the MRPWT system is modulated precisely with improved magnetic coupling towards the target coil while minimizing the power loss in the coils; hence the power transfer efficiency can be improved. Experiment is carried out to verify the validity and effectiveness of the proposed design method.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )