By Topic

Advanced Iron-Loss Estimation for Nonlinear Material Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daniel Eggers ; Institute of Electrical Machines,, RWTH Aachen University,, Aachen, Germany ; Simon Steentjes ; Kay Hameyer

The aim of an optimal design of electrical machines requires the accurate prediction of iron losses for various operating points. For this purpose different iron-loss models have been proposed which intent to describe the loss inducing effects. The most used iron-loss prediction formulas are either physically based, but nevertheless only valid for linear material behavior at low frequencies and low magnetic flux densities, or grounded on a pure mathematical description of the material behavior, that is not more than interpolated measurements. This paper presents a modified loss equation with semi-physically based parameters as well as a first try to explain the nonlinear loss component.

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 11 )