By Topic

The Dependence of Vortex Oscillation Frequency on Small In-Plane Magnetic Fields in Spin-Valve Nanocontacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Moritz Eggeling ; Austrian Institute of Technology¿AIT, Health & Environment, , Vienna, , Austria ; Theodoros Dimopoulos ; Rudolf Heer ; Hubert Bruckl

In this work we investigate the magnetic field dependence of the precession frequency of vortex states in spin-valve nanocontacts with an amorphous CoFeB free layer and an artificial antiferromagnet as polarizer. The nanocontacts have radii between 70 and 90 nm. We show that the excitation frequency in these devices responds to small, in-plane magnetic fields along the easy and hard axis directions. The characteristics of the frequency response depend on the generated magnetic configuration under the nanocontact. This, in turn, results from the combined effect of the applied magnetic field and the current-generated Oersted field. Taking also into account the relative large nanocontact radii, a variety of vortex excitation modes can arise with distinctive frequency versus field responses, some of which could be considered for magnetic field sensing applications.

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 11 )