By Topic

Vibration Analysis and Measurements Through Prediction of Electromagnetic Vibration Sources of Permanent Magnet Synchronous Motor Based on Analytical Magnetic Field Calculations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hyeon-Jae Shin ; Dept. of Electr. Eng., Chungnam Nat. Univ., Daejeon, South Korea ; Jang-Young Choi ; Hyung-Il Park ; Seok-Myeong Jang

This study is devoted to the analysis of the vibration characteristics of a permanent magnet synchronous motor (PMSM) through investigation into its electromagnetic vibration sources. For this purposed, we derive analytical solutions for the magnetic fields generated by permanent magnets (PMs) in terms of a magnetic vector potential and a two-dimensional (2-D) polar coordinate system. A 2-D permeance function is also introduced in order to consider slotting effects. The electromagnetic vibration sources such as torque ripple, cogging torque, and radial force density are analyzed using these solutions. The analytical results are validated extensively with finite element (FE) analyses. The fast Fourier transformation (FFT) analysis is employed for investigating the specific harmonic orders of the electromagnetic vibration sources that affect the vibration of the PMSM. Finally, mechanical modal analysis results and test results such as vibration measurements are obtained to confirm the validity of the analysis methods presented in this paper.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )