Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Magnetization Reversal of High Aspect Ratio Iron Nanowires Grown by Electrodeposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Qin, X.F. ; Sch. of Chem. & Mater. Sci., Shanxi Normal Univ., Linfen, China ; Deng, C.H. ; Liu, Y. ; Meng, X.J.
more authors

Smooth and high aspect ratio Fe nanowire arrays with different diameters were prepared by a low cost electrodeposition method in nanoporous anodic aluminum oxide templates. The structural and magnetic properties of these nanowire arrays have been investigated. The nanowires have smooth surface and uniform diameters. Because of the very large length-to-diameter ratio ( ~ 250), the effective magnetic anisotropy is dominated by the shape anisotropy and the easy magnetization direction is oriented along the nanowire. Coercivity as a function of diameter indicates that the magnetization reversal takes place by curling mode. Whereas, the angular dependence of the coercivity doesn't follow what is predicted by the curling mechanism, which may indicate that the magnetic reversal is also influenced by magnetic interactions between nanowires. The larger length and the smaller interpore distance induced stronger magnetic coupling between Fe nanowires. This dipolar interaction also reduces the coercivity and remanance squareness of the Fe nanowires.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )