By Topic

Effect of Frequency and Field Amplitude in Magnetic Hyperthermia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. G. Roca$^{1}$ Department of Physics,, The University of York,, York, U.K. ; B. Wiese ; J. Timmis ; G. Vallejo-Fernandez
more authors

We have undertaken studies of the heating rate in three sets of magnetic nanoparticles for their application in magnetic hyperthermia. The nanoparticles were magnetite-maghemite with average particle diameters of 5, 28, and 45 nm, respectively. All samples were synthesized in an aqueous media and have a narrow size distribution. These sizes represent particles which are single domain, particles which lie close to the single domain multi-domain boundary, and particles which are probably multidomain. The heating rate is greater for the largest particles when an alternating magnetic field of 250 Oe and a frequency of 110 kHz are applied. The significant increase in heating for the 45 nm particles suggests that heating may be associated with particle rotation.

Published in:

IEEE Transactions on Magnetics  (Volume:48 ,  Issue: 11 )