Cart (Loading....) | Create Account
Close category search window

An Improved Force Distribution Function for Linear Switched Reluctance Motor on Force Ripple Minimization With Nonlinear Inductance Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pan, J.F. ; Dept. of Autom. Sci., Shenzhen Univ., Shenzhen, China ; Cheung, N.C. ; Yu Zou

An improved force distribution function (FDF) of linear switched reluctance motors (LSRMs) based on nonlinear inductance modeling for force ripple minimization and smooth speed operation is proposed. Nonlinear inductance profile is divided into three segments with a K factor that depicts current effect on inductance of the LSRM. Speed controller based on the proposed FDF and the nonlinear inductance model is constructed. Both simulation and experimental results verify the proposed FDF with the nonlinear inductance modeling effectively reduce force ripples with uniform speed response.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.