By Topic

Integration of Magnetoresistive Biochips on a CMOS Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Cardoso, F.A. ; INESC Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal ; Costa, T. ; Germano, J. ; Cardoso, S.
more authors

Since 2006, fully scalable matrix-based magnetoresistive biochips have been proposed. This integration was initially achieved with thin film switching devices and moved to complementary metal-oxide-semiconductor (CMOS) switching devices and electronics. In this paper, a new microfabrication process is proposed to integrate magnetoresistive sensors on a small CMOS chip (4 mm2). This chip includes a current generator, multiplexers, and a diode in series with a spin valve as matrix element. In this configuration, it is shown that the fabricated spin-valves have similar magnetic characteristics when compared to standalone spin valves. This validates the successfulness of the developed microfabrication process. The noise of each matrix element is further characterized and compared to the noise of a standalone spin valve and a portable electronic platform designed to perform biological assays. Although the noise is still higher, the spin valve integrated on the CMOS chip enables an increase in density and compactness of the measuring electronics.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 11 )