By Topic

Resonant-Clock Design for a Power-Efficient, High-Volume x86-64 Microprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sathe, V.S. ; Adv. Micro Devices, Fort Collins, CO, USA ; Arekapudi, S. ; Ishii, A. ; Ouyang, C.
more authors

AMD's 32-nm x86-64 core code-named “Piledriver” features a resonant global clock distribution to reduce clock distribution power while maintaining a low clock skew. To support a wide range of operating frequencies expected of the core, the global clock system operates in two modes: a resonant-clock (rclk) mode for energy-efficient operation over a desired frequency range and a conventional, direct-drive mode (cclk) to support low-frequency operation. This dual-mode feature was implemented with minimal area impact to achieve both reduced average power dissipation and improved power-constrained performance. In Piledriver, resonant clocking achieves a peak 25% global clock power reduction at 75 °C, which translates to a 4.5% reduction in average application core power.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 1 )