By Topic

Surface Electrocardiogram Reconstruction From Intracardiac Electrograms Using a Dynamic Time Delay Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This study proposes a method to facilitate the remote follow up of patients suffering from cardiac pathologies and treated with an implantable device, by synthesizing a 12-lead surface ECG from the intracardiac electrograms (EGM) recorded by the device. Two methods (direct and indirect), based on dynamic time-delay artificial neural networks (TDNNs) are proposed and compared with classical linear approaches. The direct method aims to estimate 12 different transfer functions between the EGM and each surface ECG signal. The indirect method is based on a preliminary orthogonalization phase of the available EGM and ECG signals, and the application of the TDNN between these orthogonalized signals, using only three transfer functions. These methods are evaluated on a dataset issued from 15 patients. Correlation coefficients calculated between the synthesized and the real ECG show that the proposed TDNN methods represent an efficient way to synthesize 12-lead ECG, from two or four EGM and perform better than the linear ones. We also evaluate the results as a function of the EGM configuration. Results are also supported by the comparison of extracted features and a qualitative analysis performed by a cardiologist.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:60 ,  Issue: 1 )