By Topic

Enhancing Robustness and Performance via Switched Second Order Sliding Mode Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tanelli, M. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Ferrara, A.

This paper proposes a novel switched second order sliding mode (S-SOSM) control strategy, which allows enhancing the closed-loop performance and tune the system behavior to the current working condition. Such a control approach is intended to deal with systems characterized by different levels of uncertainties associated with different regions of the state space and to accommodate different control objectives in the different regions, so as to improve transient performance and robustness by switching among appropriate SOSM controllers. The proposed control approach allows one to improve the transient performance by switching among appropriate SOSM controllers associated with each region of the state space, with only a modest increase in the controller complexity. It is shown that the proposed control algorithms ensure global finite-time convergence to the origin of the closed-loop state trajectory. The validity of the proposed approach is analysed on a realistic case study addressing the wheel slip control of two-wheeled vehicles.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 4 )