By Topic

PEGA: A Performance Effective Genetic Algorithm for Task Scheduling in Heterogeneous Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmad, S.G. ; Comput. Sci. Dept., COMSATS Inst. of Inf. Technol., Wah Cantt, Pakistan ; Munir, E.U. ; Nisar, W.

Task scheduling has vital importance in heterogeneous systems because efficient task scheduling can enhance overall system performance considerably. This paper addresses the task scheduling problem by effective utilization of evolution based algorithm. Genetic algorithms are promising to provide near optimal results even in the large problem space but at the same time the time complexity of Genetic Algorithms are higher. The proposed algorithm, Performance Effective Genetic Algorithm (PEGA) not only provides near optimal schedule but also has a low time complexity. The PEGA efficiently finds the best solution from the search space; PEGA is performance effective due to effective utilization of genetic operators (crossover and mutation) through rigorous search. In addition the chromosome encoding with b-level introduces simplicity with efficiency. The performance is compared through extensive simulations with standard genetic algorithm (SGA). The comparison of results proved that the PEGA outperforms SGA in providing near optimal schedules with considerable less run time.

Published in:

High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on

Date of Conference:

25-27 June 2012