By Topic

Efficient Time Series Disaggregation for Non-intrusive Appliance Load Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yao-Chung Fan ; Dept. of Comput. Sci., Nat. Chung Hsing Univ., Taichung, Taiwan ; Xingjie Liu ; Wang-Chien Lee ; Chen, A.L.P.

The growing concerns on urgent environmental and economical issues, such as global warming and rising energy cost, have motivated research studies on various green computing technologies. For example, Non-Intrusive Appliance Load Monitor (NIALM) techniques, aiming at energy monitoring, load forecasting and improved control of residential electrical appliances, have been developed by monitoring one electrical circuit that contains a number of electrical appliances without using separate sub-meters. By employing pattern recognition algorithms, the NIALM techniques estimate the consumption of individual appliances. While the basic ideas behind the NIALM techniques are valid, existing proposals suffer from the issue of poor estimation accuracy. In this paper, we model the process of load separation in NIALM as a time series disaggregation problem. Aiming at achieving high estimation accuracy and alleviating excessive computation, we develop a time-series disaggregation algorithm which incorporates two novel techniques, namely, DE-pruning and monotonic enumeration, for search space pruning. A comprehensive set of experiments are conducted to validate our proposals and to evaluate the effectiveness and the efficiency of the proposed methods. The result shows that our proposal is effective and efficient.

Published in:

Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference on

Date of Conference:

4-7 Sept. 2012