By Topic

Statistical Routing for Multihop Wireless Cognitive Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dall'Anese, E. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Giannakis, G.B.

To account for the randomness of propagation channels and interference levels in hierarchical spectrum sharing, a novel approach to multihop routing is introduced for cognitive random access networks, whereby packets are randomly routed according to outage probabilities. Leveraging channel and interference level statistics, the resultant cross-layer optimization framework provides optimal routes, transmission probabilities, and transmit-powers, thus enabling cognizant adaptation of routing, medium access, and physical layer parameters to the propagation environment. The associated optimization problem is non-convex, and hence hard to solve in general. Nevertheless, a successive convex approximation approach is adopted to efficiently find a Karush-Kuhn-Tucker solution. Augmented Lagrangian and primal decomposition methods are employed to develop a distributed algorithm, which also lends itself to online implementation. Enticingly, the fresh look advocated here permeates benefits also to conventional multihop wireless networks in the presence of channel uncertainty.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 10 )