By Topic

Distributed Algorithms for Spectrum Access in Cognitive Radio Relay Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Manohar Shamaiah ; Department of Electrical and Computer Engineering, The University of Texas at Austin, TX ; Sang Hyun Lee ; Sriram Vishwanath ; Haris Vikalo

We develop distributed algorithms for efficient spectrum access strategies in cognitive radio relay networks. In our setup, primary users permit secondary users access to the resource (spectrum) as long as they consent to aiding the primary users as relays in addition to transmitting their own data. Given a pool of primary and secondary users, we desire to optimize overall network utility by determining the best configuration/pairing of secondary users with primary users. This optimization can be stated in a form similar to the maximum weighted matching problem. Given such formulation, we develop an algorithm based on affinity propagation technique that is completely distributed in its structure. We demonstrate the convergence of the developed algorithm and show that it performs close to the optimal centralized scheme.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:30 ,  Issue: 10 )