By Topic

Test Schedule Optimization for Multicore SoCs: Handling Dynamic Voltage Scaling and Multiple Voltage Islands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kavousianos, X. ; Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece ; Chakrabarty, K. ; Jain, A. ; Parekhji, R.

In order to provide high performance with low power consumption, many multicore chips employ dynamic voltage scaling and voltage islands that operate at multiple power-supply voltage levels. Effective defect screening for such chips requires test applications at different operating voltages, which leads to higher test time and test cost compared to systems-on-a-chip (SoCs), which operate at only a single voltage level. We propose test scheduling techniques to minimize the testing time for multicore chips when each core is tested at multiple voltage levels and when it is tested for state retention when the core switches between two voltage levels. The proposed techniques include exact optimization based on integer linear programming and fast heuristic methods. Experimental results for two test-case SoCs from the industry highlight the effectiveness of the proposed method.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 11 )