By Topic

An Adaptive Self-Configuration Scheme for Severity Invariant Machine Fault Diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yaqub, M.F. ; Monash Univ., Churchhill, VIC, Australia ; Gondal, I. ; Kamruzzaman, J.

Vibration signals, used for abnormality detection in machine health monitoring (MHM), exhibit significant variation with varying fault severity. This signal variation causes overlap among the features characterizing different types of faults, which results in severe performance degradation of the fault diagnostic model. In this paper, a wavelet based adaptive training set and feature selection (WATF) self-configuration scheme is presented, which selects the optimum wavelet decomposition level, and employs adaptive selection of the training set and features. Optimal wavelet decomposition level selection is such that the maximum fault signature-signal energy bands are achieved. The severity variant features, which could cause detrimental class overlap for MHM, are avoided using adaptive selection of the training set and features based on the location of a test data in feature space. WATF uses Support Vector Machines (SVM) to build the fault diagnostic model, and its performance and robustness has been tested with data having different severity levels. Comparative studies of WATF with eight existing fault diagnosis schemes show that, for publicly available data sets, WATF achieves higher fault detection accuracy, even when training and testing data sets belong to different severity levels.

Published in:

Reliability, IEEE Transactions on  (Volume:62 ,  Issue: 1 )