By Topic

Spreader Classification Based on Optimal Dynamic Bit Sharing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tao Li ; Dept. of Comput. & Inf. Sci. & Eng., Univ. of Florida, Gainesville, FL, USA ; Shigang Chen ; Wen Luo ; Ming Zhang
more authors

Spreader classification is an online traffic measurement function that has many important applications. In order to keep up with ever-higher line speed, the recent research trend is to implement such functions in fast but small on-die SRAM. However, the mismatch between the huge amount of Internet traffic to be monitored and limited on-die memory space presents a significant technical challenge. In this paper, we propose an Efficient Spreader Classification (ESC) scheme based on dynamic bit sharing, a compact information storage method. We design a maximum likelihood estimation method to extract per-source information from the compact storage and determine the heavy spreaders. Our new scheme ensures that false positive/negative ratios are bounded. Moreover, given an arbitrary set of bounds, we develop a systematic approach to determine the optimal system parameters that minimize the amount of memory needed to meet the bounds. Experiments based on a real Internet traffic trace demonstrate that the proposed spreader classification scheme reduces memory consumption by 3-20 times when compared to the best existing work. We also investigate a new multi-objective spreader classification problem and extend our classification scheme to solve it.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 3 )