By Topic

VLSI Design of Approximate Message Passing for Signal Restoration and Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Maechler, P. ; Dept. of Electr. Eng. & Inf. Technol., ETH Zurich, Zürich, Switzerland ; Studer, C. ; Bellasi, D.E. ; Maleki, A.
more authors

Sparse signal recovery finds use in a variety of practical applications, such as signal and image restoration and the recovery of signals acquired by compressive sensing. In this paper, we present two generic very-large-scale integration (VLSI) architectures that implement the approximate message passing (AMP) algorithm for sparse signal recovery. The first architecture, referred to as AMP-M, employs parallel multiply-accumulate units and is suitable for recovery problems based on unstructured (e.g., random) matrices. The second architecture, referred to as AMP-T, takes advantage of fast linear transforms, which arise in many real-world applications. To demonstrate the effectiveness of both architectures, we present corresponding VLSI and field-programmable gate array implementation results for an audio restoration application. We show that AMP-T is superior to AMP-M with respect to silicon area, throughput, and power consumption, whereas AMP-M offers more flexibility.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:2 ,  Issue: 3 )