By Topic

Simplified Feedback Linearization Control of Three-Phase Photovoltaic Inverter With an LCL Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xianwen Bao ; State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University , Xi’an, China ; Fang Zhuo ; Yuan Tian ; Peixuan Tan

The conventional grid-connected photovoltaic (PV) inverter is controlled by a dual-loop control strategy in synchronous reference frame, and the controllers are designed for steady-state operating point based on the small signal model by neglecting the high-order and coupling terms. However, in an LCL filter, the coupling terms are complicated due to the dq transformation which will affect the dynamic performance. In this paper, an innovative simplified feedback linearization (SFL) control strategy is proposed for the PV inverter with the LCL filter, which offers satisfactory performance, particularly, in decoupling the control system, improving the dynamic performance, and enhancing the adaptability. Furthermore, the SFL controllers are simpler than the high-order tracking controllers used in conventional feedback linearization control. The detailed simplification process and accurate transfer functions for SFL control strategy have been presented, and the performance comparisons between the proposed SFL control strategy and the classical dual-loop method are carried out to show the characteristics of the proposed control algorithm. Finally, a laboratory prototype of a 150-kW PV inverter with the LCL filter has been implemented to test the feasibility and effectiveness of the proposed strategy. The proposed SFL control strategy can also be applied to a higher order system or other power converters.

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 6 )