By Topic

Modeling and Estimating Simulated DNA Nanopore Translocation Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wanzhi Qiu ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Parkville, VIC, Australia ; Nguyen, T.C. ; Skafidas, E.

Solid-state nanopores have been proposed for rapid and inexpensive deoxyribonucleic acid (DNA) sequencing and analysis. This technology is primarily based on characterizing the ionic current flowing through the pore as DNA translocates from one side of the pore to the other side under the influence of an electric field. The magnitude of the DNA-induced current blockade is an important analytical feature for these applications. However, it remains a challenging task to accurately determine the ionic current levels due to small signal-to-noise ratios. In order to facilitate reliable analysis it is necessary to understand the noise statistics and develop effective signal estimation techniques. In this paper, we conduct a molecular dynamics simulation of DNA translocations through a solid-state nanopore and reveal that the simulated ionic current signals contain both thermal and shot noise. We then develop a model for these signals and propose a maximum likelihood estimator (MLE) for estimating the ionic current levels. We show that the MLE has the potential to significantly outperform the classic sample mean estimator.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 4 )