Cart (Loading....) | Create Account
Close category search window
 

Efficient Skyline Computation on Big Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xixian Han ; Sch. of Comput. Sci. & Technol., Harbin Inst. of Technol., Harbin, China ; Jianzhong Li ; Donghua Yang ; Jinbao Wang

Skyline is an important operation in many applications to return a set of interesting points from a potentially huge data space. Given a table, the operation finds all tuples that are not dominated by any other tuples. It is found that the existing algorithms cannot process skyline on big data efficiently. This paper presents a novel skyline algorithm SSPL on big data. SSPL utilizes sorted positional index lists which require low space overhead to reduce I/O cost significantly. The sorted positional index list Lj is constructed for each attribute Aj and is arranged in ascending order of Aj. SSPL consists of two phases. In phase 1, SSPL computes scan depth of the involved sorted positional index lists. During retrieving the lists in a round-robin fashion, SSPL performs pruning on any candidate positional index to discard the candidate whose corresponding tuple is not skyline result. Phase 1 ends when there is a candidate positional index seen in all of the involved lists. In phase 2, SSPL exploits the obtained candidate positional indexes to get skyline results by a selective and sequential scan on the table. The experimental results on synthetic and real data sets show that SSPL has a significant advantage over the existing skyline algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.