By Topic

Clustering based on enhanced α-expansion move

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yun Zheng ; Sch. of Inf. Sci. & Technol., Sun Yat-Sen Univ., Guangzhou, China ; Pei Chen

The exemplar-based data clustering problem can be formulated as minimizing an energy function defined on a Markov random field (MRF). However, most algorithms for optimizing the MRF energy function cannot be directly applied to the task of clustering, as the problem has a high-order energy function. In this paper, we first show that the high-order energy function for the clustering problem can be simplified as a pairwise energy function with the metric property, and consequently it can be optimized by the α-expansion move algorithm based on graph cut. Then, the original expansion move algorithm is improved in the following two aspects: 1) Instead of solving a minimal s-t graph cut problem, we show that there is an explicit and interpretable solution for minimizing the energy function in the clustering problem. Based on this interpretation, a fast α-expansion move algorithm is proposed, which is much more efficient than the graph-cut-based algorithm. 2) The fast α-expansion move algorithm is further improved by extending its move space so that a larger energy value reduction can be achieved in each iteration. Experiments on benchmark data sets show that the enhanced expansion move algorithm has a better performance, compared to other state-of-the-art exemplar-based clustering algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 10 )