By Topic

Adaptive Sparse Recovery by Parametric Weighted L _{1} Minimization for ISAR Imaging of Uniformly Rotating Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Rao ; Department of Electronic Engineering, Tsinghua University, Beijing, China ; Gang Li ; Xiqin Wang ; Xiang-Gen Xia

It has been shown in the literature that, the inverse synthetic aperture radar (ISAR) echo can be seen as sparse and the ISAR imaging can be implemented by sparse recovery approaches. In this paper, we propose a new parametric weighted L1 minimization algorithm for ISAR imaging based on the parametric sparse representation of ISAR signals. Since the basis matrix used for sparse representation of ISAR signals is determined by the unknown rotation parameter of a moving target, we have to estimate both the ISAR image and basis matrix jointly. The proposed algorithm can adaptively refine the basis matrix to achieve the best sparse representation for the ISAR signals. Finally the high-resolution ISAR image is obtained by solving a weighted L1 minimization problem. Both numerical and real experiments are implemented to show the effectiveness of the proposed algorithm.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 2 )