By Topic

Broadband 3-D Sonar System Using a Sparse Array for Indoor Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steckel, J. ; Dept. of Milieu, Technol. en Technologiemanagement, Univ. Antwerpen, Antwerp, Belgium ; Boen, A. ; Peremans, H.

Array beamforming techniques allow for the generation of 3-D spatial filters which can be used to localize objects in a large field of view (FOV) without the need for mechanical scanning. By combining broadband beamforming with a sparse, random array of receivers, we have constructed a low-cost, yet powerful, in-air sonar system, which is suited for a wide range of robotic applications. Experimental results in unmodified office environments show the performance of the sonar sensor. In particular, we document the sensor's capacity to produce 3-D location measurements in the presence of multiple highly overlapping echoes. We show how this capability makes possible the combination of a wide FOV with accurate 3-D localization, allowing the sensor to operate under real-time constraints in realistic environments. To demonstrate the use of this sensor, we describe an odometry application that estimates egomotion of a mobile robot using acoustic flow.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 1 )