By Topic

Simulating the Trapped B Field in Bulk Superconductors Using a Mutual Inductance Coupling Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kent R. Davey$^{1}$Physics Department, , University of Houston,, Edgewater,, FL, USA ; Roy Weinstein ; Drew Parks ; Ravi Sawh

The field and current induced in a trapped field magnet during a transient current excitation is complicated by the fact that the conductivity of the material changes wildly depending on both the magnitude of the induced current and the local B field. A mutual inductance approach is presented for solving this coupled problem; it involves discretizing the bulk superconductor into cells and precomputing the inductance coupling matrix of all cells with one another and with the excitation coils. The benefits of this approach are that the numerical simulation is rapid and flexible. The latter is important because the conductivity of the individual cells is dependent on the current density, the magnetic field density magnitude, and the temperature. The proposed approach allows the modeling of a very sharp J-E relationship which has proved problematic using conventional finite element approaches. In addition, a phenomenological model relating the critical current density to the field is introduced for these tests in place of the Kim model. The field simulation is tested with a challenging dwell time experiment in which the trapped field above a bulk superconductor is predicted for various excitation current hold times.

Published in:

IEEE Transactions on Magnetics  (Volume:49 ,  Issue: 3 )