By Topic

Exploring Patterns of Gradient Orientations and Magnitudes for Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ngoc-Son Vu ; Image & Signal Dept., Grenoble Inst. of Technol., Grenoble, France

A novel direction for efficiently describing face images is proposed by exploring the relationships between both gradient orientations and magnitudes of different local image structures. Presented in this paper are not only a novel feature set called patterns of orientation difference (POD) but also several improvements to our previous algorithm called patterns of oriented edge magnitudes (POEM). The whitened principal component analysis (PCA) dimensionality reduction technique is applied upon both the POEM- and POD-based representations to get more compact and discriminative face descriptors. We then show that the two methods have complementary strength and that by combining the two algorithms, one obtains stronger results than either of them considered separately. By experiments carried out on several common benchmarks, including the FERET database with both frontal and nonfrontal images as well as the very challenging LFW data set, we prove that our approach is more efficient than contemporary ones in terms of both higher performance and lower complexity.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:8 ,  Issue: 2 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal