By Topic

Improvement of Epitaxy GaN Quality Using Liquid-Phase Deposited Nano-Patterned Sapphire Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cheng-Yu Hsieh ; Materials Science and Engineering Department, National Chiao Tung University, Hsinchu, Taiwan ; Bo-Wen Lin ; Hsin-Ju Cho ; Bau-Ming Wang
more authors

A relatively simple and easy and inexpensive liquid-phase deposition (LPD) method is employed to introduce nanoscale silica hemispheres on sapphire substrates for fabricating a nano-patterned sapphire substrate (NPSS). Compared with GaN grown on sapphire without any pattern, the NPSS-GaN film is of much better quality as observed by scanning electron microscopy, transmission electron-microscopy, X-ray diffraction, cathodoluminescence, and photoluminescence. This is because GaN is initiated from the c-plane instead of the LPD-silica surface. In addition, many dislocations within the NPSS-GaN bend toward the patterns, or end at the GaN/void interfaces.

Published in:

IEEE Photonics Technology Letters  (Volume:24 ,  Issue: 24 )