By Topic

Heterogeneous Face Recognition Using Kernel Prototype Similarities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Klare, Brendan F. ; Noblis, Falls Church ; Jain, Anil K.

Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 6 )
Biometrics Compendium, IEEE