By Topic

Class-Based Shared Resource Allocation for Cell-Edge Users in OFDMA Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Singhal, C. ; Commun. Networks Res. Lab., Indian Inst. of Technol. Delhi, New Delhi, India ; Kumar, S. ; De, S. ; Panwar, N.
more authors

In this paper, we present a new resource allocation scheme for cell-edge active users to achieve improved performance in terms of a higher system capacity and better quality-of-service (QoS) guarantee of the users, where we utilize the two-dimensional resource allocation flexibility of orthogonal frequency division multiple access (OFDMA) networks. Here, the mobile stations (MSs) at the cell-edge can maintain parallel connections with more than one base station (BS) when it is in their coverage area. A MS, before handoff to a new BS, seeks to utilize additional resources from the other BSs if the BS through which its current session is registered is not able to satisfy its requirements. The handoff procedure is termed as split handoff. The BSs participate in split handoff operation while guaranteeing that they are able to maintain QoS of the existing connections associated with them. In this study, first, we present the proposed shared resource allocation architecture and protocol functionalities in split handoff, and give a theoretical proof of concept of system capacity gain associated with the shared resource allocation approach. Then, we provide a differentiated QoS provisioning approach that accounts for the MS speed, its channel quality, as well as the loads at different BSs. Via extensive simulations in Qualnet, the benefits of the proposed class-based split handoff approach is demonstrated. The results also indicate traffic load balancing property of the proposed scheme in heavy traffic conditions.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:13 ,  Issue: 1 )