By Topic

Preliminary analysing of experimental data for the development of high Cr Alloy Creep damage constitutive equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lili An ; Sch. of Sci. & Eng., Teesside Univ., Middlesbrough, UK ; Qiang Xu ; Donglai Xu ; Zhongyu Lu

This paper presents the current research of preliminary analysing of experimental data for the development of high Cr Alloy Creep damage Constitutive Equations (such as P91 alloy). Firstly, it briefly introduces the background of general creep deformation, rupture and continuum damage mechanics. Secondly, it illustrates the constitutive equations used for P91 alloy or its weldment, especially of the form and deficiencies of two kinds of most widely used typical creep damage constitutive equations Kachanov-Rabotnov-Hayhurst (KRH) and Xu's formations. And then, the methodology for development of new set constitutive equation proposed by Xu (2004)[1] has been followed in this research. Fourthly, there is a critically analysis of the specific experiment data for P91 alloy and its weldment. Afterwards, the specific requirements for developing a new set constitutive equation have been reported. Finally it suggests the directions for future work. This paper contributes to the knowledge for the developing creep damage constitutive equations for the specific material.

Published in:

Automation and Computing (ICAC), 2012 18th International Conference on

Date of Conference:

7-8 Sept. 2012