By Topic

An Evolutionary Multiobjective Sleep-Scheduling Scheme for Differentiated Coverage in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soumyadip Sengupta ; Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India ; Swagatam Das ; Md. Nasir ; Athanasios V. Vasilakos
more authors

We propose an online, multiobjective optimization (MO) algorithm to efficiently schedule the nodes of a wireless sensor network (WSN) and to achieve maximum lifetime. Instead of dealing with traditional grid or uniform coverage, we focus on the differentiated or probabilistic coverage where different regions require different levels of sensing. The MO algorithm helps to attain a better tradeoff among energy consumption, lifetime, and coverage. The algorithm can be run every time a node failure occurs due to power failure of the node battery so that it may reschedule the network. This scheduling is modeled as a combinatorial, multiobjective, and constrained optimization problem with energy and noncoverage as the two objectives. The basic evolutionary multiobjective optimizer used is known as decomposition-based multiobjective evolutionary algorithm (MOEA/D) which is modified by integrating the concept of fuzzy Pareto dominance. The performance of the resulting algorithm, which is called MOEA/DFD, is compared with the performance of the original MOEA/D, which is another very well known MO algorithm called nondominated sorting genetic algorithm (NSGA-II), and an IBM optimization software package called CPLEX. In all the tests, MOEA/DFD is observed to outperform all other algorithms.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:42 ,  Issue: 6 )