By Topic

Formulation of Reduced-Taskload Optimization Models for Conflict Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vela, A. ; Georgia Inst. of Technol., Atlanta, GA, USA ; Feigh, K.M. ; Solak, S. ; Singhose, W.
more authors

This paper explores methods to include aspects of controller taskload into conflict-resolution programs through a parametric approach. We are motivated by the desire to create conflict-resolution decision-support tools that operate within a human-in-the-loop control architecture by actively accounting for, and moderating, controller taskload. Specifically, we introduce two conflict-resolution programs with the objective of managing controller conflict-resolution taskload, i.e., the number of maneuvers used to separate air traffic. Managing conflict-resolution taskload is accomplished by penalizing aircraft maneuvers through their L1 norm in the cost function or constraining the number of maneuvers directly. Analysis of the programs reveals that both approaches are successful at managing controller conflict-resolution taskload and minimizing fuel burn. Directly constraining conflict-resolution taskload is more successful at minimizing the variation in the number of aircraft maneuvers issued and returning the aircraft to their desired exit point. Penalizing maneuvers through L1 norm costs is more successful at reducing controller conflict-resolution taskload at lower traffic volumes. Ultimately, results demonstrate that the inclusion of such parametric models can successfully regulate controller conflict-resolution taskload.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:42 ,  Issue: 6 )