By Topic

RF Discharges in Nonequilibrium Atmospheric-Pressure Plasma Jets at Narrow Gap Sizes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qurat-ul-Ain ; Inst. of Appl. Phys., Vienna Univ. of Technol., Vienna, Austria ; Laimer, J. ; Stori, H.

Electrical and spectroscopic investigations of an atmospheric-pressure plasma jet ( APPJ) using variable flow rates of helium gas have shown that an alteration of the gas flow rate changes the operation region of stable uniform discharges. By decreasing the gap spacing to values below 400 μm and decreasing the gas flow rate, the uniform discharges can be operated at higher current densities and, consequently, higher radio-frequency power. Time-resolved optical emission spectroscopy has shown that, at low gas flow rates in narrow gaps (below 400 μm), back diffusion is prominent, which influences the stability of the discharge in the jet. An attempt for scaling up an APPJ by doubling its surface area has shown that, with increasing the surface area, the power dissipation cannot be increased, thus limiting the possibility to scale up such type of plasma sources.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 11 )