By Topic

Half-Duplex Relaying Over Slow Fading Channels Based on Quantize-and-Forward

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sha Yao ; Sch. of Electr. Eng., R. Inst. of Technol., Stockholm, Sweden ; Tùng T. Kim ; Mikael Skoglund ; H. Vincent Poor

The focus of this paper is to study the performance of the quantize-and-forward (QF) scheme over a half-duplex relay channel that is slowly fading, with the assumption that the channel state information (CSI) is available only at the receiver side. In order to do so, three steps are taken. The first step is to characterize the achievable rate of the QF scheme over a discrete memoryless half-duplex relay channel. Then, the achievable rate over a corresponding additive white Gaussian noise channel is obtained (the specific assumption regarding the CSI in this paper makes this step nontrivial). With the results from the first two steps, performance measures such as outage probability, expected rate, and diversity-multiplexing tradeoff (DMT) over slow fading channels are evaluated. It is shown that the QF scheme can significantly outperform the compress-and-forward scheme at finite signal-to-noise ratio (SNR) and it can achieve the optimal DMT at asymptotically high SNR. Moreover, it is shown that simple feedback from the destination node to the relay node can further improve the performance of the QF scheme.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 2 )