Cart (Loading....) | Create Account
Close category search window
 

Single-Microphone Early and Late Reverberation Suppression in Noisy Speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mosayyebpour, S. ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, Victoria, BC, Canada ; Esmaeili, M. ; Gulliver, T.A.

This paper presents a single-microphone approach to the enhancement of noisy reverberant speech via inverse filtering and spectral processing. An efficient algorithm is used to blindly estimate the inverse filter of the Room Impulse Response (RIR). This filter is used to attenuate the early reverberation. A simple technique to blindly determine the filter length is presented. A two-step spectral subtraction method is proposed to efficiently reduce the effects of background noise and the residual reverberation on the equalized impulse response. In general, the equalized impulse response has two detrimental effects, late impulses and pre-echoes. For the late impulses, an efficient spectral subtraction algorithm is developed which introduces only minor musical noise. Then a new algorithm is introduced which reduces the remaining pre-echo effects. The performance of this two-stage method is examined in different reverberant conditions including real environments. It is also evaluated with white Gaussian and recorded babble noise. The results obtained demonstrate that the proposed blind method is superior in terms of reducing early and late reverberation effects and noise compared to well known single-microphone techniques in the literature.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.