Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Two-Stage Interface Circuit Design for a 32-Color Resolution Optical Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Assaad, M. ; Electr. & Electron. Dept., PETRONAS Univ. of Technol., Bandar Seri Iskandar, Malaysia ; Yohannes, I. ; Bermak, A.

An interface circuit design for an optical sensor based on a two-stage cascaded architecture is presented in this paper. The proposed design is a mixed signal solution that provides few advantages in terms of speed, power consumption, higher resolution with smaller number of storage units, and small area for future on-chip integration. Simulation and experimental results for five bits resolution (32 levels) are presented to validate the design. We are aiming for a single-chip integrated solution; however, for a quick proof of concept, the proposed design has been implemented as a PCB using discrete off-the-shelf components. The biasing current and power consumption from the PCB implementation are 192 mA and 1.3 W, respectively, at a 6.75-V supply voltage.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 2 )