By Topic

Inference of surfaces, 3D curves, and junctions from sparse, noisy, 3D data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guy, G. ; Intelligent Comput. Solutions Inc., USA ; Medioni, G.

We address the problem of obtaining dense surface information from a sparse set of 3D data in the presence of spurious noise samples. The input can be in the form of points, or points with an associated tangent or normal, allowing both position and direction to be corrupted by noise. Most approaches treat the problem as an interpolation problem, which is solved by fitting a surface such as a membrane or thin plate to minimize some function. We argue that these physical constraints are not sufficient, and propose to impose additional perceptual constraints such as good continuity and “cosurfacity”. These constraints allow us to not only infer surfaces, but also to detect surface orientation discontinuities, as well as junctions, all at the same time. The approach imposes no restriction on genus, number of discontinuities, number of objects, and is noniterative. The result is in the form of three dense saliency maps for surfaces, intersections between surfaces (i.e., 3D curves), and 3D junctions, respectively. These saliency maps are then used to guide a “marching” process to generate a description (e.g., a triangulated mesh) making information about surfaces, space curves, and 3D junctions explicit. The traditional marching process needs to be refined as the polarity of the surface orientation is not necessarily locally consistent. These three maps are currently not integrated, and this is the topic of our ongoing research. We present results on a variety of computer-generated and real data, having varying curvature, of different genus, and multiple objects

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 11 )